EXFO’s FTB-8510G Packet Blazer™ offers performance assurance for 10 Gigabit Ethernet-based services. Its suite of test applications provides all the measurements required for validating service-level agreements (SLAs) between service providers and their customers. Housed in the FTB-500 Platform or FTB-200 Compact Platform, the FTB-8510G module tests connectivity in its native format: 10GBASE-xR or 10GBASE-xW used for transport of Ethernet-based LAN-to-LAN services. It can also be used to test next-generation SONET/SDH, hybrid multiplexers, dark fiber or xWDM networks running 10 Gigabit Ethernet interfaces.
EtherSAM: the new standard in Ethernet testing
ITU-T Y.1564 is the new standard for turning up and troubleshooting Carrier Ethernet services. This methodology is completely adapted to today’s Ethernet services especially mobile backhaul and commercial services. Up to now, RFC 2544 has been the most widely used methodology. However, it was designed for network device testing in the lab, not for services testing in the field. ITU-T Y.1564 is the first testing standard developed for the field. It has a number of advantages over the RFC 2544 including validation of critical SLA criteria such as packet jitter and QoS measurements. This methodology is also significantly faster, therefore saving time and resources while optimizing QoS.
Contrary to other methodologies, EtherSAM supports new multiservice offerings. It can simulate all types of services that will run on the network and simultaneously qualify all key SLA parameters for each of these services. Moreover, it validates the QoS mechanisms provisioned in the network to prioritize the different service types, resulting in more accurate validation and much faster deployment and troubleshooting. EtherSAM is comprised of two phases, the service configuration test and the service performance test.
Service configuration test
The network configuration test consists in sequentially testing each service. It validates that the service is properly provisioned and that all specific KPIs or SLA parameters are met. A ramp test and a burst test are performed to verify the committed information rare (CIR), excess information rate (EIR), committed burst size (CBS) and excess burst size (EBS).
Service performance test
Once the configuration of each individual service is validated, the service performance test simultaneously validates the quality of all the services over time.
EtherSAM bidirectional results
EXFO’s EtherSAM approach proves even more powerful as it executes the complete ITU-T Y.1564 test with bidirectional measurements. Key SLA parameters are measured independently in each test direction, thus providing 100 % first-time-right service activation—that is the highest level of confidence in service testing.
RFC 2544 test suite
The FTB-8510G Packet Blazer can perform the RFC 2544 test suite for 10 GbE LAN/WAN interface at all frame sizes and at full line rate, allowing the provider to certify that the circuit is efficient and error-free at 100 % utilization.
The Packet Blazer supports automated RFC 2544 testing, including throughput, latency, burst (back-to-back) and frame loss. Automation also provides ease of use for field technicians by enabling accurate, efficient measurements and results through a clear and simple pass/fail indication. In addition, the Packet Blazer generates reports that can be given to customers for future reference related to their specific SLAs.
Efficient testing leads to reliable performance
MPLS, MPLS-TP and PBB-TE: carrier Ethernet transport solution testing
As technologically-sophisticated business and residential consumers continue to drive demand for premium, high-bandwidth data services such as voice and video, service providers worldwide are evolving their transport infrastructures to support these bandwidth and quality intensive services. No longer is an all-IP core sufficient; providers must now expand their IP convergence to the edge/metro network, in a cost-effective, quality-assured manner. Ethernet has long been accepted as an inexpensive, scalable data networking solution in LAN environments. The stringent QoS expectations require solutions that tap into the cost-effectiveness of Ethernet without sacrificing the benefits of connection-oriented (albeit it costly) TDM solutions such as SONET/SDH.
Ethernet tunneling technologies such as Provider Backbone Bridge-Traffic Engineering or PBB-TE (also referred to as PBT) and transport MPLS address these requirements. These technologies enable connection-oriented Ethernet, providing carriers with a means of offering scalable, reliable and resilient Ethernet services. The PBB-TE and MPLS options on the FTB-8510G Packet Blazer offer service providers a comprehensive field tool to efficiently qualify Ethernet services from end to end, validating metro and core tunneling technologies.
EtherBERT™
Ethernet is increasingly carried across a variety of layer 1 media over longer distances. This creates a growing need for the certification of Ethernet transport on a bit-per-bit basis, which can be done using bit-error-rate testing (BERT).
BERT uses a pseudo-random binary sequence (PRBS) encapsulated into an Ethernet frame, making it possible to go from a frame-based error measurement to a bit-error-rate measurement. This provides the bit-per-bit error count accuracy required for acceptance testing of physical-medium transport systems. BERT-over-Ethernet should usually be used when Ethernet is carried transparently over layer 1 media, in cases such as Ethernet over DWDM, CWDM or dark fiber.
Ethernet QoS measurements
Data services are making a significant shift toward supporting a variety of applications on the same network. Multiservice offerings such as triple-play services have fuelled the need for QoS testing to ensure the condition and reliability of each service and fully qualify SLA parameters. The FTB-8510G Packet Blazer allows service providers to simultaneously simulate and qualify different applications through its multistream application. The user has the capability to configure up to ten streams with different Ethernet and IP QoS parameters such as VLAN ID (802.1Q), VLAN Priority (802.1p), VLAN stacking (802.1ad Q-in-Q), and DSCP. Specific stream profiles to transmit VoIP, video and data can be selected for each stream. Throughput, latency, frame loss and packet jitter (RFC 3393) measurements are also available simultaneously for each stream, allowing fast and in-depth qualification of all SLA criteria.
Ethernet advanced troubleshooting
The FTB-8510G provides a number of advanced features essential for in-depth troubleshooting in the event of network failures or impairments. The advanced filtering option allows the user to configure up to ten filters with each up to four operands, which will be applied to the received Ethernet traffic. Detailed statistics are available for each configured filter providing the user with critical information required to pinpoint specific problems. Additionally, the FTB-8510G supports a traffic scan feature that allows quick identification and monitoring of VLAN and MPLS flows on the network. This can help clearly identify top bandwidth users.
The FTB-8510G also supports full-line-rate data capture and decode. This key troubleshooting tool enables field technicians to easily identify complex network issues. The comprehensive capture feature includes the capability to configure capture filters and triggers to quickly zero-in on network events.